このブログでは、工作の記録、実験の結果や考察が散逸しないように専ら備忘録に使ってます。プログラムのソースや設計データ等は載せていませんが、詳しく知りたい方がおりましたらコメントいただければ対応します。

所有する主な測定器はこちらです。


ラベル トラジェネ の投稿を表示しています。 すべての投稿を表示
ラベル トラジェネ の投稿を表示しています。 すべての投稿を表示

2011年10月31日月曜日

トラッキングジェネレータ(5)

いよいよトラジェネの組み立てを行います。
まず、226.42MHzの発振器の出力を増幅し、余分な信号を除去し、可変アッテネータで出力調整を行います。
226.42MHzの発振器は以前作りました。こんなやつです。
この発振器の信号を増幅し、余分な信号を除去し、可変アッテネータで出力調整を行うのも、このblogで製作した自作回路です。
この3つの回路(アンプ、フィルター、可変アッテネータ)を別々のシールドケースに入れるのもアレなので、適当なシールドケースに収めて1つのユニットにしたいなあと考えていました。
ちょうど、今年のハムフェアでジャンクのシールドケースをゲットしていたので、 これを使いましょう。
ゲットしたシールドケースは、両端にSMAコネクタが生えているケースですが、位置がずれて取り付けられています。なので、基板も写真のように斜めに取り付けてみました。
3つの基板が直線状に繋がっていて、左が増幅回路、真中がフィルター、右がPINダイオードのアッテネータです。
蓋を入れた全体図はこんな感じです。
アンプ用の電源が8V、PINダイオードのアッテネータは+5Vと、1-11Vの可変電源が必要です。貫通コンデンサをケースに取り付けて、電源を入力します。

とりあえず、今日はここまでにします。
次回に続きます。



応援クリックをお願いします!

にほんブログ村 その他趣味ブログ 電子工作へ
にほんブログ村 電子工作ランキング

2011年10月26日水曜日

LCフィルタの設計(3)

前回、Nuhertz社のLCフィルター計算ソフトを使って、BPFを設計し実際に作ってみました。
まず下が回路図です。
これをフィルター実験用基板に実装しました。

今回はコネクターを取り付けずに、下の写真のような高周波用の治具を使いました。
ギガホルダーといって、基板端部にSMAコネクタを水平にし半田付けをせずに接触させて使う同軸コンタクターです。
さてこれで周波数特性を測定してみます。100MHzから300MHzまでをスイープして減衰率を測定します。
このような特性のフィルターができました。
やはり、集中定数で構築すると寄与成分が影響して理論通りにはいかないものです。
今回は高調波を落とすだけなので、これでよしとします。

さて、今回まででトラジェネ製作に足りなかった、広帯域アンプ、フィルター、可変アッテネータがすべて揃いました。
これでやっとトラジェネを組み立てられるようになります。

実際には内部のコンポーネンツがいろいろな電源を必要とするので、電源周りから作っていくことになりますが、次回からやっとトラジェネ組み立てです。



応援クリックをお願いします!

にほんブログ村 その他趣味ブログ 電子工作へ
にほんブログ村 電子工作ランキング

2011年10月23日日曜日

LCフィルタの設計(2)

設計に使ったNuhertz社のLCフィルター計算ソフトですが、製品版のFilterSolutionには使用するインダクタを統一してくれる便利な機能があります。コンデンサに比べインダクターは種類が少ないのでかなり助かります。
これを使って前回の回路を作り直してみました。
よく使う定数で構成されてよさそうです。
特性グラフもよさそうです。ではこれを電磁解析してみます。

こっちのほうが前回よりよさそうです。というわけでこっちにしましょう。



応援クリックをお願いします!

にほんブログ村 その他趣味ブログ 電子工作へ
にほんブログ村 電子工作ランキング

2011年10月22日土曜日

LCフィルタの設計(1)

前回、アンプの基板を作った際、割り付けで余ったスペースにLCフィルタを作れるようにパターンを作りました。
こんな感じの基板です。この基板に適切なインダクタとコンデンサを組み合わせてフィルターを作るんですが、さてどのように設計しましょうか?

このリンク先のページにも解説されていますが、1rad/sec、インピーダンス1Ωで正規化されている係数表を使って目的の遮断周波数などに変換してあげればよいのです。

でも、かなりめんどくさいです。


なので、フィルターの条件(遮断周波数、減衰量、段数など)と、フィルタの種類(LPF,HPF,BPF等)、あとは係数表の種類(バターワース、チェビチェフ等)を入れると自動的にフィルタの定数を決めてくれるツールがあるといいですね。

インターネット上にはオンラインで計算してくれるページがあって、これとかこれとかこれとか使えます。
オフラインツールもいくつかありますが、Nuhertz社LCフィルター計算ソフトなんか特におすすめです。無償版の"Filter Free"は段数が3段までに制限されていますが、実用的にはそれくらいで十分というのがほとんどでしょう。

ではここから実際に設計していきましょう。作るのはトラジェネの発振器から出力される226.42MHzの信号に混ざっている不要な信号です。ほとんどがVCOからのノイズや高調波です。こいつを除去します。
  1. フィルタはバンドパスフィルター(BPF)とします。
  2. n倍高調波が見られます。なので、それほど急峻な特性を持っていないバターワース・フィルターでもいけそうです。
  3. 通過する中心周波数は230MHz、帯域幅は100MHzとします。
  4. フィルターの段数は3段としました。
  5. 入出力インピーダンスは50Ω
  6. π型の素子構成
 ツールはこんな感じで入力します。

こんな感じで、結果が回路図で出てきます。

またAWR高周波シミュレータを持っていると、左側のEXPORTというところに「AWR Direct」というリンクが出来ます。これを選ぶと自動的にデータがAWRに転送され、回路解析して波形を表示してくれます。
実際には、こんなふうに回路図を作ってくれて
波形をだしてくれます。

でもよく回路図を見てみると、15.04nHとか31.83pFとか実際の部品にはない値です。これを実際に売っている系列数値に直してもう一度波形をみないといけません。しかも部品箱を見たら160nHが無くて150nHを使うことにしました。
AWRに転送された回路図の定数を15nH、33pF、150nH、3pFに変更して、もう一度解析し波形をだしてみました。
すこし波形が崩れてしまいましたが大丈夫そうです。

ちなみに、このNuhertz社のLCフィルター計算ソフトですが製品版のFilterSolutionだと系列の一番近い定数に自動的になおしてくれる機能もあります。
青字が修正されたところです。 自分の手持ち部品リストも登録できるので便利です。
また、特性グラフも書いてくれます。
こんな感じで出てくるので、フィルタ特性の概要を見るにはよいでしょう。
次に、この回路を実際に基板に乗せるために、電磁解析シミュレーターで解析してみます。
 いつもの通り、こんな感じで基板に配置してみます。
さてシミュレーションの結果はAWRシミュレーションの結果と同じでした。
次回はこのフィルタを作って性能を見てみましょう。

本来なら、ネットワークアナライザやトラジェネがあればこういうフィルタの評価は簡単になるのですが、これができないとトラジェネができないということなので仕方ありません。SGとスペアナで測定してみます。



応援クリックをお願いします!

にほんブログ村 その他趣味ブログ 電子工作へ
にほんブログ村 電子工作ランキング

2011年10月18日火曜日

トラッキングジェネレータ用広帯域アンプ(5)

先日、3.5GHzまで使える広帯域アンプを設計して基板を発注しましたが、今日届きました。
下が設計データです。
そして、これが今日届いた基板です。グリーンレジストは電源レギュレータ部分だけにとどめ、あとはレジスト&メッキなしにしてあります。また、基板の下1/3は余ったのでLCフィルターの実験基板にしてみました。
毎週のように基板を作っているのですが、やはり高周波回路というのは、きれいに作ればそれなりに良い特性を示すものです。
このクオリティで、基板の単価が穴あき基板を買うより安いとあれば、作ってもらった方がよいに決まっています。これからも、何か作るときは、すぐ基板を設計して発注したいと思います。

今回のアンプは、さっそく性能を評価してレポートします。



応援クリックをお願いします!

にほんブログ村 その他趣味ブログ 電子工作へ
にほんブログ村 電子工作ランキング

2011年10月7日金曜日

トラッキングジェネレータ用広帯域アンプ(4)

トラッキングジェネレータ用広帯域アンプの基板をFUSIONに発注しました。

スタブの形状をさらに改良し、下のグラフのように出力レベルの平坦度が2dBmに収まるようにしました。
アンプ用の電源は、外部から直接8Vを供給するか、三端子レギュレータを使うこともできるようにパターンを用意しました。ノイズ対策のため、電源部分の回路はアースを含めてアンプ回路から分離し、さらに基板にホールをいくつか空けておきました。(FUSIONはスリット穴には未対応なので)

このアンプを5cm角基板の2/3に配置しましたが、1/3が残ってしまいました。
もったいないので、この残り1/3をLCフィルターの実験基板にしてみました。

フィルター基板では、9次までのチェビチェフ/バターワース型のLPF/HPFを作ることができます。マイクロストリップラインのパターンはデフォルト5次(L2つ、C3つ)で、必要に応じてパターンカットで9次まで対応します。

基板が届くのが楽しみです!


応援クリックをお願いします!

にほんブログ村 その他趣味ブログ 電子工作へ
にほんブログ村 電子工作ランキング

2011年10月3日月曜日

トラッキングジェネレータ用広帯域アンプ(3)

前回シミュレーションした広帯域アンプの回路を少し改良してみました。
格安基板屋で50mm角基板が$10で作れるので、基板の横幅は50㎜で設計しています。
 右側の扇型のスタブの大きさと水平位置を変更して、S22の高周波側のマッチングを改善してみました。

出力レベルの平坦度も、だいぶ改善されました。とりあえず、これで発注してみたいと思います。



応援クリックをお願いします!

にほんブログ村 その他趣味ブログ 電子工作へ
にほんブログ村 電子工作ランキング

2011年10月2日日曜日

トラッキングジェネレータ用広帯域アンプ(2)

DC~3.5GHzまでの広帯域アンプですが、フラットな特性(もちろん位相がくるくる回ってしまうのは論外)を出さないといけません。

増幅チップは、高周波広帯域増幅用MMIC(Microwave Monolithic IC)を使います。入出力インピーダンスが50Ωに整合されているので比較的簡単に広帯域アンプが作れます。
今回のMMICは、ミニサーキット社のERA-1です。DC~8GHzまで対応するMMICで、4GHzまで+10~12dBm増幅してくれます。これを2段カスケードで使用します。
基板は厚さ0.8mmのガラスエポキシ基板としました。

MMICでは、バイアス回路を経由して必要な電力をチップに供給しますが、高周波信号と電源を分離することが必須です。
この信号と電源の分離回路ですが、前に増幅回路を設計した際にコンデンサとインダクタを組み合わせてチョーク回路を作りました
今回も同様に、インダクタ、バイパスコンデンサとチップ抵抗を取り付けて回路を組んでいきます。
 この回路の電磁解析結果は次の通りでした。
 この結果からは、3.5GHzまで利得は19dBmから24dBmまでの範囲に収まっているのが分かります。またS32も-50dB以下となり、電源と信号の分離はできています。でも、もうすこし改善できるといいかな。

次に、このチョーク回路をミニサーキット社のチョークコイルに交換して設計してみます。
使用するチョークはADCH-80Aで、50MHz-10GHzまで使用可能なチョークコイルです。

ミニサーキット社の製品はSパラメータが公開されているので、シミュレーターで設計するのが容易です。今回も増幅用MMIC、チョークコイルのパラメータをダウンロードして使いました。

さて、以下のように回路を変更しました。チョークコイル(けっこうサイズがでかい)が基板の面積の結構な割合を占めています。
この回路ではさらに出力ポートのインピーダンスマッチングのためにスタブ(右側の扇型のパターン)を2つ挿入してあります。チップ部品のような集中定数ではなく、分布定数のコンポーネンツを入れるのがミソです。
この回路の電磁解析結果は次の通りでした。

DCから3.5GHzまでの利得は+20dBmから+24dBmまでの範囲に収まり、さきほどより改善しました。またS32も-70dB以下となり、電源と信号の分離もずいぶんよくなりました。
S11とS22のスミスチャートを見ると、3.5GHzまで中心に集まっています。
でも、もう少し中心に集まるようにマッチングを改善すると、もっと良い特性になります。

とりあえずの回路はできましたが、もう少し特性をよくするように回路を見直していきます。

今回はここまでとします。


応援クリックをお願いします!

にほんブログ村 その他趣味ブログ 電子工作へ
にほんブログ村 電子工作ランキング